

Head of Technology and Science **Space Innovation**

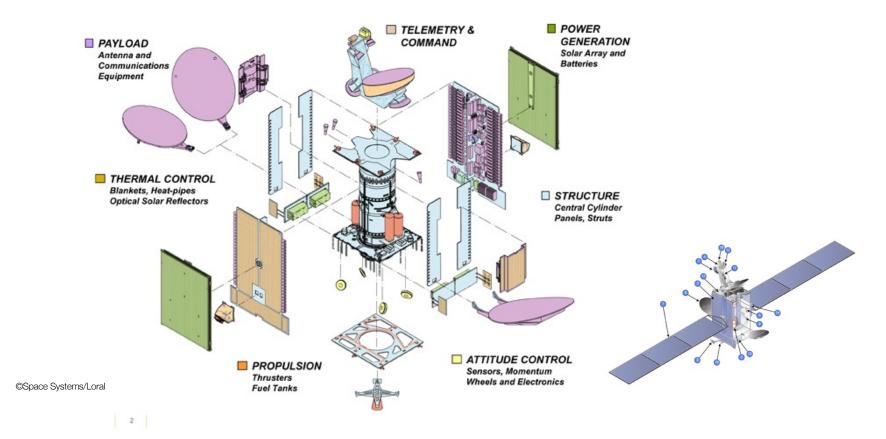
Gilles Feusier

EE580 "Introduction to the Design of Space Mechanisms"

- Dipl. Ing. Physicist EPFL 1993
- PhD in Solid State Physics EPFL 1997
- Project Manager, MECANEX SA Nyon (1997 -2001)
- Technical Director, MECANEX SA Nyon (2001-2006)
- Head of development and innovation, RUAG AEROSPACE SA – Nyon (2007-2008)
- CTO, VOUMARD MACHINES SA Hauterive (2008-2011)
- Product structure responsible, SCHOTT Suisse SA
 Yverdon-les-bains (2011-2012)
- Member of the committee of the European Space Mechanisms and Tribology Symposium (ESMATS)
- Head of Technology and Science, Space Innovation – EPFL (since 2013)

gilles.feusier@epfl.ch

24th – **26**th September **2025**


Lausanne Switzerland

For ESMATS 2025: esmats2025@space-innovation.ch



Telecom Satellite Platform (GEO)

Telecom Satellite Platform (constellations, e.g. Starlink)

Mechanism

Collins Dictionary

mechanism:

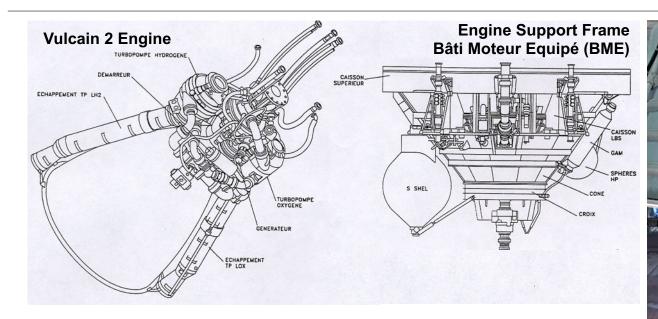
"[...] a system or structure of moving parts that performs some function [...]"

Space Mechanisms

Launch and Re-Entry Vehicles

- Separation systems
- Engine/propulsion regulation, gimballing devices, turbo pumps
- Flap controls, parachute deployment systems

Spacecraft equipment

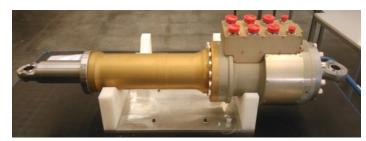

- Wheels, mechanical coolers, pumps, valves, solar array drive mechanisms ...
- Hold-down/release, deployment, ...
- Pointing, ...

Science Observatories, Earth Remote Sensing, and Planetary Exploration Mechanisms, In-Orbit Maintenance

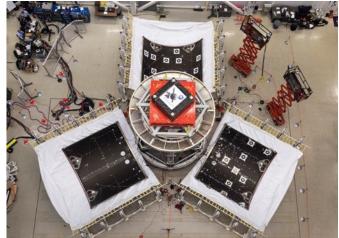
- Mechanisms for manipulations, robots, rovers
- Sampling systems and in-situ analysis devices, bioreactors, lab equipment
- Mechanical devices for science and remote sensing instruments

Engine gimbals, turbopumps, valves

SLS Main Engine



Engine gimbals, turbopumps, valves


©G. Dée et al., EUCASS2019-186

Introduction to Space Mechanisms & Structure ©GF

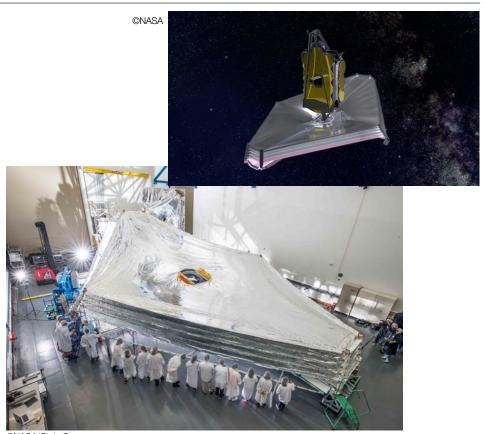
Separation Systems

Orion fairing separation test

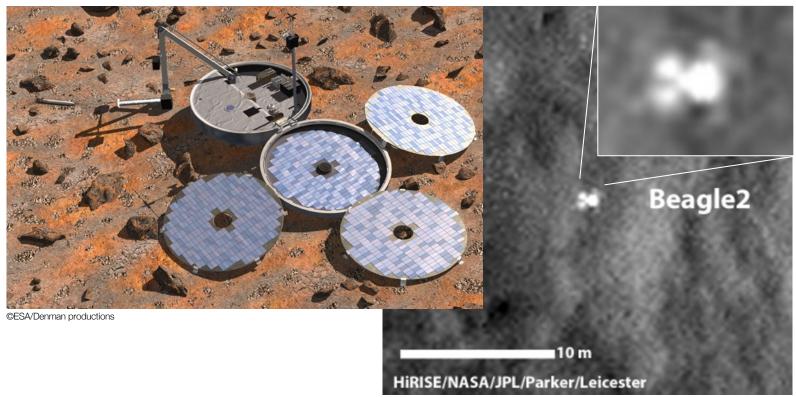
Ariane 5 fairing separation test

©RUAG-ESA

Deployment, release

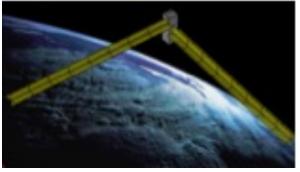

11

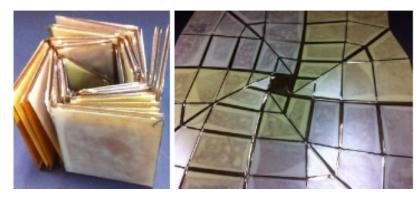
Deployment, release


©NASA/Chris Gunn

©NASA/Chris Gunn

Deployment: failure

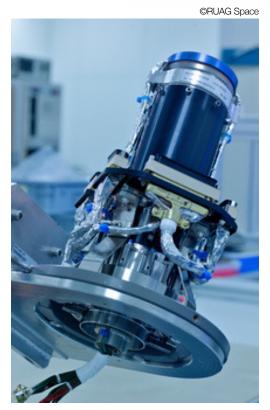

©NASA/JPL-Caltech/Univ. of Arizona/University of Leicester



Deployment of solar sails

©D. Turse et al., 42nd Aerospace Mechanisms Symposium, 2014

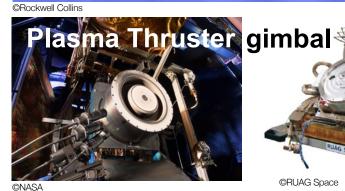
S. A. Zirbel et al., 42nd Aerospace Mechanisms Symposium, 2014 Origami-Inspired



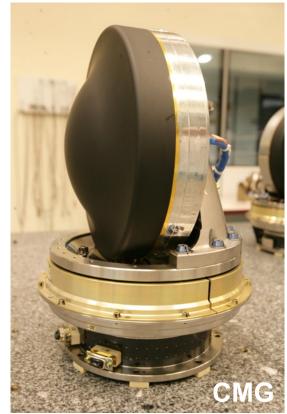
Drive mechanisms, power transfer

©ESA, SADM manufactured by RUAG Aerospace Zurich

©RUAG Space


Introduction to Space Mechanisms & Structure ©GF

©C. Courtois et al., 16th ESMATS

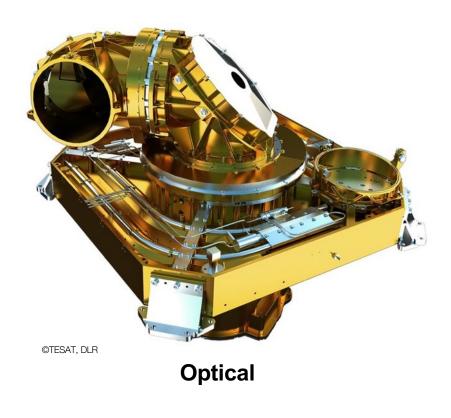


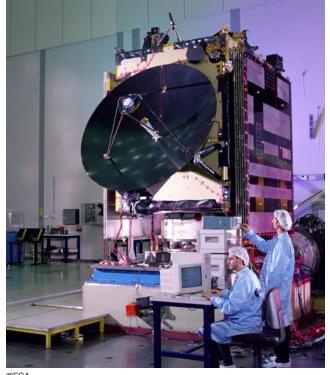
Attitude control

@Airbus DS GmbH

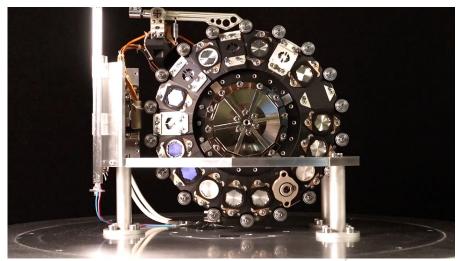
Introduction to Space Mechanisms & Structure ©GF

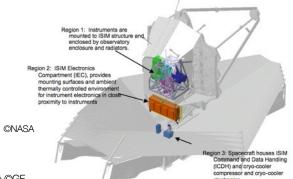
Fluidic: valves for spacecraft propulsion

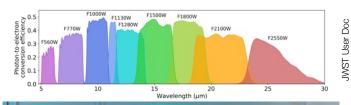

©Moog Bradford Engineering B.V.


©Moog Bradford Engineering B.V.

Payloads, communication

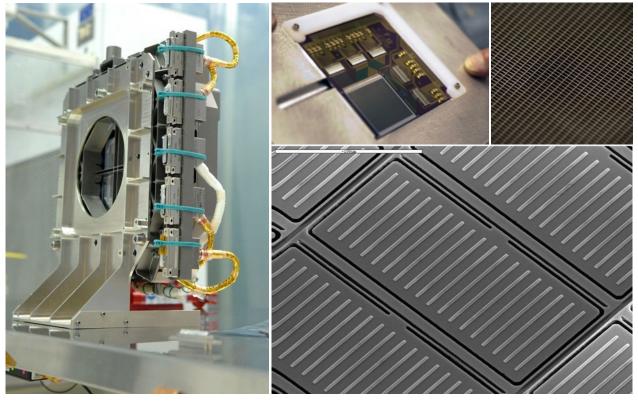

RF


©ESA


Optical payload – Filter assemblies

©M. Pössel/MPIA/HdA

JWST MIRI Filter Wheel Qualification Model



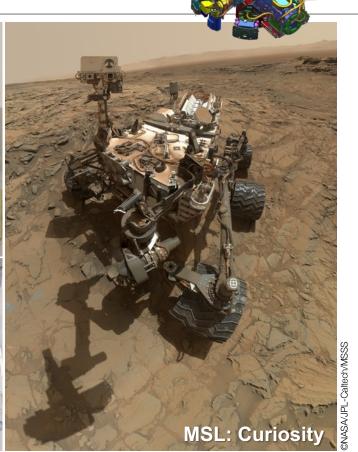
©STFC/RAL

Optical payload – JWST: NIRSpec instrument microshutter (MEMS)

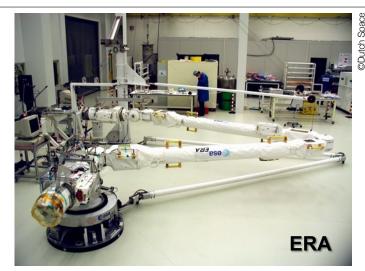
©NASA's James Webb Space Telescope

Space Laboratory

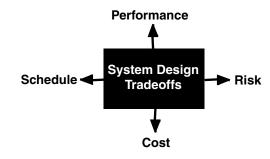
Bioreactors


Planet exploration, robotic

Mars Sample Return



Space Robotic



NOVIVO

Parameters - Sizing

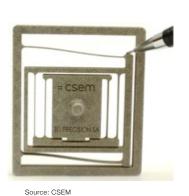
- Interfaces
- Thermal stability and loads
- Structural strength
- Tribology, wear
- Micro-vibration and noise
- Multi-body dynamics
- Cynematic

Mass ⇔ Size ⇔ Function ⇔ Reliability

Complexity ⇒ Risk

Bearings

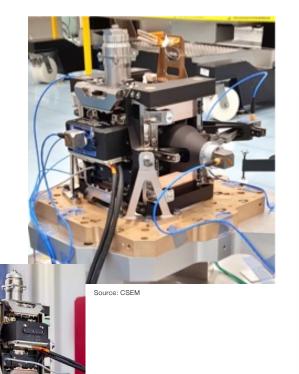
- Bearing types
 - Ball-bearings
 - Plain bearings
 - Flexure bearings
 - Magnetic bearings

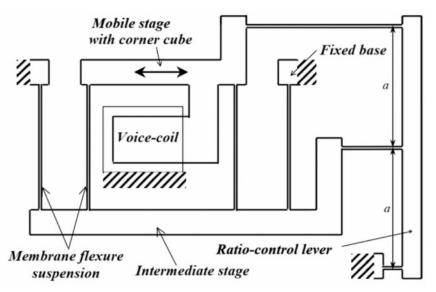


- Ball-bearing materials:
 - 440C stainless steel is a martensitic high-carbon steel with up to 18 percent chromium, HRC 58.
 - **52100 high-carbon steel** is a 1 1/2 percent chromium steel, HRC 60, greater wear resistance (gyros, ...) Corrosion -> **not recommended for space**
 - **Ceramic** (e.g. Si₃N₄) Fragile
- Limited electrical and heat conductivity (λ ~ few hundredth of W/K). Depends on preload, material, lubricant. Varies with the rotation speed.
- Drag torque, torque noise, running noise -> control + microvibrations
- Wear

Compliant Mechanisms

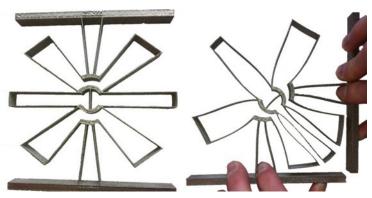

Source: Almatech


Introduction to Space Mechanisms & Structure ©GF



Compliant Mechanisms

©ESA

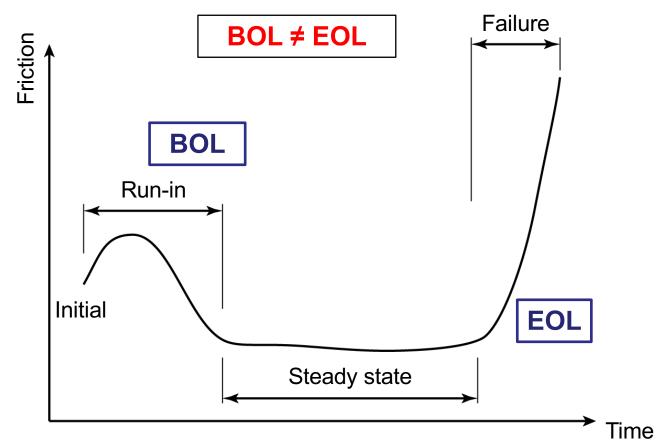

Source:

P. Spanoudakis et al. "Design and Production of the METOP Satellite IASI Corner Cube Mechanisms", European Space Mechanisms and Tribology Symposium, San Sebastian (2003)


ALM (3D printing)

Additive Layer Manufacturing

© E. G. Merriam et al., 42nd Aerospace Mechanisms Symposium, 2014


Wear of tribological contacts

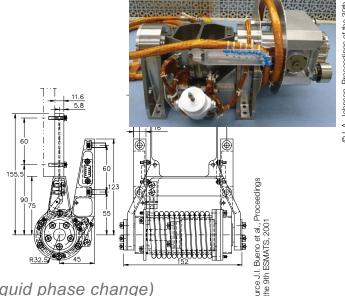
- Friction and Wear are function of:
 - Contact load/stress
 - Hardness of the contact materials
 - Oxidation of the contact surfaces, oxidation film
 - Temperature
 - Atmospheric pressure (vacuum, ambient)
 - Environment (humidity, contamination, ...)
 - Working conditions: vibrations, speed
 - Surface microstructure and condition
 - Pairing of the materials (e.g. electrochemical corrosion, cold welding ...)

•

Wear of tribological contacts

Lubricants for space applications

- Volatility, evaporation: outgassing
- Migration (Creep: tendency of liquid lubricant to creep or migrate)
- Viscosity as a function of temperature
- Chemical degradation
 - Maintenance free ... (long lifetime ...)


Lubricants for space applications

- Dry Lubricants (Solid Lubricants)
 - MoS₂, WS₂, ... Pb, Au, Ag ...
- Grease, oil (specific ones, with low outgassing properties)
- Ionic Liquids
- Self Lubricating Materials
 - Polymers: PTFE (Teflon®), Polyamide (Vespel®), Phenolic, Torlon®, Peek® ...
 - Metals: Bronzes
- Coatings
 - Resin bonded, Anodizing, Plasma coating, PVD, CVD, ...

Actuators

- Rotary
- Linear
- Types:
- Electric and Magnetic
- Hydraulic
- Elastic Energy
 - Spring motor
 - · Compliant structure, self deployable structure
- Thermal
 - Bimetal
 - Paraffin actuator (volume expansion of solid-to-liquid phase change)
 - Shape memory alloy (SMA)
- Pyrotechnic

Electromagnetic Actuators

Brushed DC (encapsulated)

@Soterem

©Avior Contol Technologies, Inc.
Introduction to Space Mechanisms & Structure ©GF

Piezo-electric Actuator

Introduction to Space Mechanisms & Structure ©GF

35

Thermal Actuator

Introduction to Space Mechanisms & Structure @GF

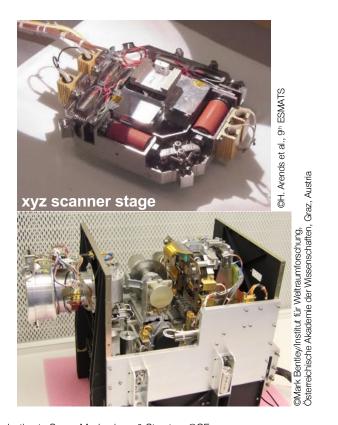
36

Pyro-actuators

Hold Down & Release Mechanism

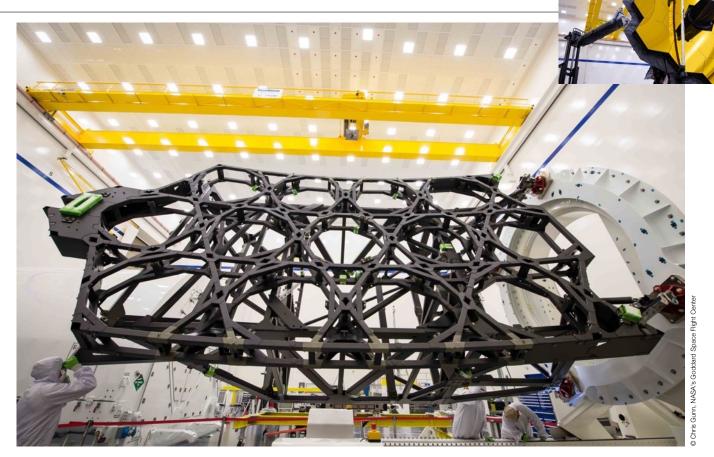
©NEA Electronics, Inc.

Cable cutter


Pyrovalve

©Cobham Group

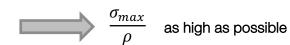
Example: ROSETTA – MIDAS Instrument



The MIDAS instrument contains 7 different mechanisms:

- 1. Cover to keep the funnel closed and clean in prelaunch and launch conditions. Released with a **Pyro-Piston Actuator**.
- 2. Shutter to control deposition time of the dust flux on the target wheel. Operated by a **Piezo-Electric motor**.
- 3. Wheel assembly includes a **Piezo-Electric motor** and an Incremental Encoder.
- 4. Translation stage for tip selection. Operated by a **Piezo- Electric motor**.
- 5. Approach mechanism for the coarse approach of the tips to the samples. Operated by a **DC brush-motor** in a hermetically sealed pressurised container.
- 6. XYZ scanner for three-dimensional scanning of the sample. Operated with three **Piezo-electric actuators**. Two **SMA**'s are implemented for launch-lock of the X and Y scanner.
- 7. Clamping mechanism to fix the AFM-baseplate before and during the launch. Two **paraffin actuators** release all 4 clamps.

Structures


Introduction to Space Mechanisms & Structure ©GF

39

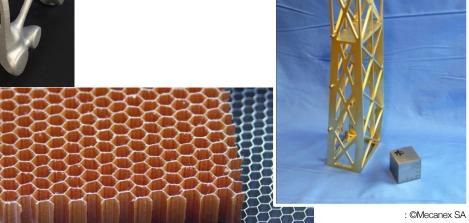
Reducing the mass: material selection

- · Ideal case:
 - Maximum strength
 - σ_{max} as high as possible
 - σ_{max} can be $\sigma_{0.2}$ (yield strength) or σ_u (ultimate strength)

- Minimum mass
 - ρ minimum (low specific mass)

Various sources, for order of magnitude only

Material	σ _{max} [MPa]	$ ho$ [kg/m 3]	σ_{max} / $ ho$	Comments
Polyimide (Vespel SP-1)	86.2	1430	0.06	@ room temperature
INCONEL 718	980	8190	0.12	@ 650° C
Beryllium	240	1844	0.13	Very high stiffness, very brittle
Al-Li 8090 T8151	370	2540	0.15	Difficult supply, low corrosion strength
High strength stainless steel (15-5-PH)	1140	7800	0.15	Metallurgical state > H1000 or limited corrosion strength
Aluminum Series 7000 T73	435	2810	0.15	Limited stress corrosion cracking strength
Stainless steel (440C)	1280	7800	0.16	
TA6V	1000	4430	0.23	Solution treated and aged
Carbon Fiber Reinforced Polymer (CFRP)	400-2800	1500-1800	0.27-1.9	Complex technology



Reducing the mass: adapting the geometry

- Remove excess mass
 - Machining of pockets
 - Thin parts with ribs
 - Suitable assembly methods
 - Monolithic
 - Welding
 - Riveting
 - Gluing
 - Screwing
 - Additive manufacturing
 - Use of advanced composite materials
 - Honeycomb
 - Structural polymers
 - Carbon Fiber Reinforced Polymer (CFRP)

Source: M.E. Orme et al. "Additive Manufacturing of Lightweight, Optimized, Metallic Components Suitable for Space Flight", Journal of Spacecraft and Rockets Vol. 54, No. 5. September—October 2017

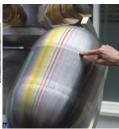
Assembly of structures

Monolithic

- Machined from billet
 - Advantage: no assembly elements (always critical)
 - Drawback: complex machining
- Additive Manufacturing
 - Advantage: very complex geometry can be achieved, topology optimization, no assembly (geometry complexity ≠ manufacturing complexity)
 - **Drawback:** post-processing required, complex product assurance
- **Assembly of parts** (always critical processes requiring qualified personal)
 - Welding:
 - Metallurgical transformation with the creation of lower strength area
 - Risk of corrosion
 - Incompatible materials (e.g. Al-Li)

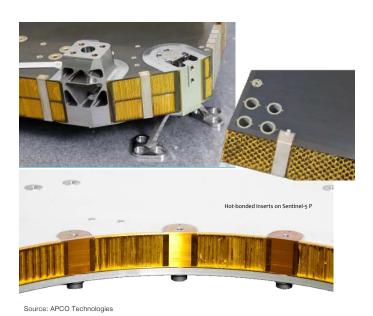
Rivetina

- Highly elaborated and well-known technology (aerospace).
- Highly dependent on qualified personal
- Risk of stress corrosion cracking. Surface finish and cleanliness are key

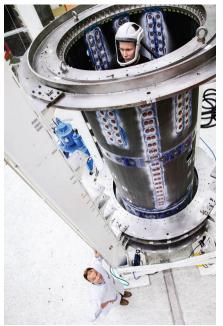

Gluing

- Highly dependent on surface finish (cleanliness, presence of a potential primer, surface roughness, ...)
- Selection of the glues with respect to the use

Risks during operations: aging under radiations, thermal degradation, softening (e.g. glass transition temperature, chemical modifications ...) ...

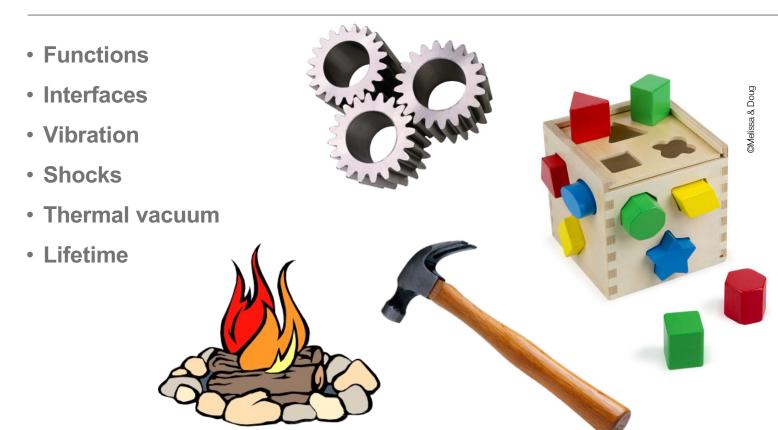

Source: ESA-G. Porter

Assembly of structures


- Example of assembly
 - Inserts and threaded inserts glued into a CFRP honeycomb structure

Source: RUAG Space

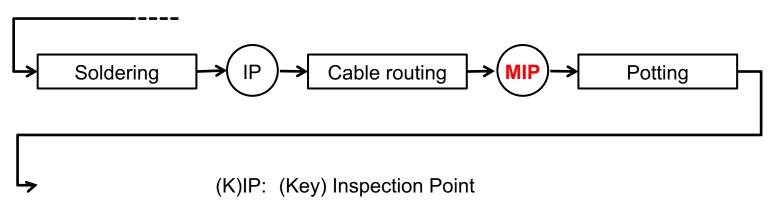
Space Mechanism & Structure Standards


European Cooperation for Space Standardization (ECSS)

https://ecss.nl

- ECSS-E-ST-33-01C Space engineering: Mechanisms
- ECSS-E-ST-32C Space engineering: Structural general requirements
- ECSS-E-ST-10-03C Space engineering: Testing
- ECSS-Q-ST-70 Space product assurance: material, mechanical part and process
 - ECSS-Q-ST-70-36 Space product assurance: Material selection for controlling stress corrosion cracking
 - ECSS-Q-ST-70-37 Space product assurance: Determination of the susceptibility of metals to stress corrosion cracking
 - ECSS-Q-ST-70-71 Space product assurance: Data for selection of space materials and processes
- ...
- Others (NASA, MIL, ...)
 - + various handbooks (ECSS, NASA, ...)

Testing


Introduction to Space Mechanisms & Structure ©GF

45

Model and MAIT Philosophy

- BBM, EM, STM, QM, EQM, PFM, FM ...
 - Early stage fit and functions: concepts, principle of operations, cable routing, ...
- MAIT Plan, Sequence of Integration
 Manufacturing, Assembly, Integration and Testing

MIP: Mandatory Inspection Point (ECSS-Q-ST-20C)

Dependability ... Reliability, Safety

- Redundancy most of the time impossible to implement
 - Fail-Safe
 - Single Point of Failure
- Failure mode, effects and criticality analysis (FMECA) ECSS-Q-ST-30-02C
- Safety (manned flight, ground equipment, launch vehicles, ...)
 - Hazard scenario,

Likelihood,
 Severity.

⇒ Magnitude of safety risk

Conclusion

- Mechanisms are never perfect
 - Dimensions, mass
 - Stiffness
 - Non-linearities, backlash
 - Tribology, Wear
 - Microvibrations
 - Reproducibility
- Mechanisms are potentially single point of failure (SPF)
- Complexity = Risk
- Challenges of structures
 - Strength
 - · Deformations, including thermo-elastic deformations
 - Mass
 - Assembly

Test, test, test ...